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ABSTRACT 
 

Keyword queries are used to access data from databases. To improve the performance of querying system it would 

be useful to identify queries with low ranking quality. In this paper we analyze the characteristics of hard queries 

and propose a novel framework to measure the difficulty for a keyword query over a database. We evaluate our 

query difficulty prediction model against two effectiveness benchmarks for popular keyword search ranking 

methods. The ranking quality of the result provides a good user satisfaction. Our intensive experiments show that 

the algorithms predict the issue of a question with comparatively low errors and negligible time overhead.  
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I. INTRODUCTION 

 

Keyword query interfaces for databases have attracted a 

lot of attention within the last decade because of their 

flexibility and easy use in looking and exploring the data. 

[1][5].Since any entity in a data set that contain the 

query keywords is a potential answer, keyword queries 

typically have many possible answer. Keyword queries 

should determine the information desires behind 

keyword queries and rank the answer so the required 

answers seem at the highest of the list [1] [6].Some of 

the difficulties of answering a query as follows: First, 

unlike queries in languages like SQL, users do not 

normally specify the desired schema element(s) for each 

query term. For instance, query Q1: Godfather on the 

IMDB database (http://www.imdb.com) does not specify 

if the user are interested in movies whose title is 

Godfather or movies distributed by the Godfather 

company. Therefore, a KQI must find the desired 

attributes associated with each term in the query. Second, 

the schema of the output is not specified, i.e., users do 

not give enough information to single out exactly their 

desired entities [7]. For example, Q1 may return movies 

or actors or procedures. There are cooperative efforts to 

produce standard benchmarks and evaluation platforms 

for keyword search methods over databases. One effort 

is the data- centric track of INEX Workshop [8]. 

Wherever KQIs square measure evaluated over the well-

known IMDB information set that contain structured 

information regarding movies and other people in show 

business. Queries were provided by participants of the 

workshop. Another effort is the series of Semantic 

Search Challenges at Semantic Search Workshop [9], 

where set is that the Billion Triple Challenge data set at 

http://vmlion25.deri.de.It’s extracted from completely 

different structured data sources over the online like 

Wikipedia. The queries are taken from Yahoo! Keyword 

query log. User have to provided relevance  judgment 

for both benchmarks. It is necessary for a KQI to 

acknowledge such queries and warn the user or use 

various techniques like question reformulation or 

question suggestion. It’s going to additionally use 

techniques like question results diversification. For 

instance consider the query ancient Rome era over 

IMDB data set. Users would like to see information 

about movies that talks about the ancient Rome. For this 

query, the state-of-the-art XML search methods which 

we implemented return rankings of considerably lower 

quality than their average ranking quality over all 

queries. To the most effective of our data, there has not 

been any work on predicting or analyzing the difficulties 

of the queries over databases. Researchers have 

proposed some methods to detect difficult queries over 

plain text document collections [10][13]. However, these 

techniques aren’t applicable to our drawback since they 

ignore the structure of the information. Above all, as 

mentioned earlier, a KQI should assign every question 

term to a schema element(s) within the information. It 

http://www.imdb.com/
http://vmlion25.deri.de/
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should additionally distinguish the specified result 

type(s). We tend to through empirical observation shows 

that direct diversifications of these techniques area unit 

ineffective for structured data.   

 

We make the following contributions: 

 

1. We introduce the problem of predicting the degree 

of the difficulty for queries over databases. We also 

analyze the reasons that make a query difficult to 

answer by KQIs. 

2. We propose the Structured Robustness (SR) score, 

which measures the difficulty of a query based on 

the difference between the rankings of the same 

query over the original and noisy (corrupted) 

versions of the same database, where the noise spans 

on both the content and the structure of the result 

entities 

3. We present an algorithm to compute the SR score, 

and parameters to tune its performance. 

4. We introduce efficient approximate algorithms to 

estimate the SR score, given that such a measure is 

only useful when it can be computed with a small 

time overhead compared to the query execution 

time. 

5. We show the results of extensive experiments using 

two standard data sets and query workloads: INEX 

and SemSearch. Our results show that the SR score 

effectively predicts the ranking quality of 

representative ranking algorithms, and outperforms 

non-trivial baselines, introduced in this paper. 

II. METHODS AND MATERIAL 

A. Literature Review 

 

Researchers has been propose a methods to predict hard 

queries over unstructured text documents 

[10][13][17].We can broadly categorize these methods 

into two groups: pre-retrieval and post-retrieval 

methods. Pre-retrieval methods [14][18] predict the 

difficulty of a query that it does not utilize its result. 

These methods usually use the statistical properties of 

the term in the query to evaluate specificity, ambiguity, 

or term- relatedness of the query to predict its difficulty 

[19]. There are some examples of these statistical 

characteristics are average inverse document frequency 

of the query terms or number of documents that contain 

at least one query term [14]. We developed a method for 

predicting query performance by computing the relative 

entropy between a query language model and the 

corresponding collection language model. Post-retrieval 

methods utilize the results of a query to predict its 

difficulty and generally fall into one of the following 

categories. 

Clarity-score-based 

 

It is based on the concept of clarity score assume that 

users are concerned in a very few topics. Thus, 

sufficiently noticeable from other documents in the 

collection [10][14][15]. It is efficient than pre-retrieval 

based methods for text documents.[10] Some systems 

compute the distinguish ability of the queries results 

from the documents in the collection by comparing the 

probability distribution of terms in the results with the 

probability distribution of terms in the whole collection. 

If these probability distributions are relatively similar, 

the query results contain information about almost as 

many topics as the whole collection, thus, the query is 

considered becomes the difficult [10]. Too many 

successors has been proposed methods to improve the 

efficiency and effectiveness of clarity score [14], [15]. 

However, one requires domain knowledge about the data 

sets to extend idea of clarity score for queries over 

databases. Each topic in a database contains the entities 

that contain a similar subject. It is therefore hard to 

define a formula that partitions entities into topics as it 

requires finding an effective similarity function between 

entities. Such similarity function depends mainly on the 

domain knowledge and understanding users’ preferences 

[21]. For instance, distinct attributes may have distinct 

impacts on the degree of the similarity between entities 

Ranking-score-based 

 

Ranking score based methods defines the ranking score 

of the document returned by retrieval system for a user 

query. It estimates the similarity between a query and 

the document and defines the difficulty of a  query by 

the difference between weighted entropy score of top 

ranked result and the score of other documents [16], [17]. 

Zhou and Croft shows that the information gained from 

a desired list of documents should be much more than 

the information gained from typical documents in the 

collection for an easy query. They measure the degree of 

the difficulty of a query by computing the difference 

between the weighted entropy of the top ranked results’ 
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scores and the weighted entropy of other documents’ 

scores in the collection [17]. Shtok et al. argue that 

whatever the amount of non-query-related information 

in the top ranked results must be negatively correlated 

with the deviation of their retrieval scores [16]. Using 

language modeling techniques, they show that the 

standard deviation of ranking scores of top-k results 

calculate the quality of the top ranked results effectively. 

We examine the query difficulty prediction accuracy of 

this set of methods on databases and show that our 

model outperforms these methods over databases. 

 

Robustness Based: 

 

Robustness-based methods defines how robust is the 

query over specific document. This method defines the 

degree of difficulty of query by considering the 

robustness of the ranking over two versions of data, 

Original version and corrupted version, and compares 

the top k results of same query over these two versions 

[12] Degree of difference between these results defines 

the degree of hardness of query. Some methods use 

machine learning techniques to study complex queries 

and its properties and then predict their hardness [22]. 

These methods are effective, if large amount and quality 

of data are available which are normally not available 

for many databases. 

B. Properties of Hard Queries 

As discussed above, it is well established that the more 

diverse the candidate answers of a query are, the more 

difficult the query is over a collection of the text 

documents. We extend this idea for queries over 

databases and propose three sources of difficulty for 

answering a query over a database as follows: 

 

1) The more entities match the terms in a query, the 

less specificity of this query and it is harder to 

answer properly. For example, there are more than 

one person called Ford in the IMDB data set. If a 

user submits query Q2: Ford, a KQI must resolve 

the desired Ford that satisfy the user’s information 

need. As opposed to Q2, Q3: Spielberg matches 

smaller number of people in IMDB, so it is easier 

for the KQI to return its relevant results. 

2) Each attribute describes a different aspect of an 

entity and defines the context of terms in attribute 

values of it. If a query matches different attributes in 

its candidate answers, it will have a more diverse set 

of potential answers in database, and hence it has 

higher attribute level ambiguity. For instance, some 

candidate answers for query Q4: Godfather in 

IMDB some contain its term in their title and some 

contain its term in their distributor. For the sake of 

this example, we ignore other attributes in IMDB. A 

KQI must identify the desired matching attribute for 

Godfather to find its relevant answers. As opposed 

to Q4, query Q5: taxi driver does not match any 

instance of attribute distributor. Hence, a KQI 

already knows the desired matching attribute for Q5 

and has an easier task to perform.  

3) Each entity set contains the information about a 

different type of entities and defines another level of 

context (in addition to the context defined by 

attributes) for terms. Hence, if a query matches 

entities from more entity sets, it will have higher 

entity set level ambiguity. For instance, IMDB 

contains the information about movies in an entity 

set called movie and the information about the 

people involved in making movies in another entity 

set called person. Consider query Q6: divorce over 

IMDB data set whose candidate answers come from 

both entity sets. However, movies about divorce and 

people who get divorced cannot both satisfy 

information need of query Q6. A KQI has a difficult 

task to do as it has to identify if the information need 

behind this query is to find people who got divorced 

or movies about divorce. In contrast to Q6, Q7: 

romantic comedy divorce matches only entities from 

movie entity set. It is less difficult for a KQI to 

answer Q7 than Q6 as Q7 has only one possible 

desired entity set. The aforementioned observations 

show that we may use the statistical properties of the 

query terms in the database to compute the diversity 

of its candidate answers and predict its difficulty, 

like the pre-retrieval predictors introduced in 

Section 2. One idea is to count the number of 

possible attributes, entities, and entity sets that 

contain the query terms to estimate the query 

specificity and ambiguity and use them to predict 

the difficulty of the query. The larger this value is 

the more difficult the query will be. We have shown 

empirically in Section 8.2 that such approach 

predicts the difficulty of queries quite poorly. This is 

because the distribution of query terms over 

attributes and entity sets may also impact the 

difficulty of the query. For instance, assume 

database DB1 contains two entity sets book and 
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movie and database DB2 contains entity sets book 

and article. Let term database appear in both entity 

sets in DB1 and DB2. Assume that there are far 

fewer movies that contain term database compared 

to books and articles. A KQI can leverage this 

property and rank books higher than movies when 

answering query Q8: database over DB1. 

However, it will be much harder to decide the desired 

entity set in DB2 for Q8. Hence, a difficulty metric must 

take in to account the skewness of the distributions of 

the query term in the database as well. In Section 5 we 

discuss how these ideas are used to create a concrete 

noise generation framework that consider attribute 

values, attributes and entity sets. 

 

III. RESULTS AND DISCUSSION 

A. Implementation Details 

 

Basic Estimation Techniques:  

 

Data Sets: 

The INEX data set is from the INEX 2010 Data Centric 

Track [14]. The INEX data set contains two entity sets: 

movie and person. Each entity in the movie entity set 

represents one movie with attributes like title, keywords, 

and year. The person entity set contains attributes like 

name, nickname, and biography. The SemSearch data 

set is a subset of the data set used in Semantic Search 

2010 challenge [9]. The original data set contains 116 

files with about one billion RDF triplets. Since the size 

of this data set is extremely large, it takes a very long 

time to index and run queries over this data set. Hence, 

we have used a subset of the original data set in our 

experiments. We first removed duplicate RDF triplets. 

Then, for each file in SemSearch data set, we calculated 

the total number of distinct query terms in SemSearch 

query workload in the file. We selected the 20, out of the 

116, files that contain the largest number of query 

keywords for our experiments. We converted each 

distinct RDF subject in this data set to an entity whose 

identifier is the subject identifier. The RDF properties 

are mapped to attributes in our model. The values of 

RDF properties that end with substring ―#type" 

indicates the type of a subject. Hence, we set the entity 

set of each entity to the concatenation of the values of 

RDF properties of its RDF subject that end with 

substring ―#type". If the subject of an entity does not 

have any property that ends with substring ―#type", we 

set its entity set to ―UndefinedType". We have added 

the values of other RDF properties for the subject as 

attributes of its entity. We stored the information about 

each entity in a separate XML file. We have removed 

the relevance judgment information for the subjects that 

do not reside in these 20 files. The sizes of the two data 

sets are quite close; however, SemSearch is more 

heterogeneous than INEX as it contains a larger number 

of attributes and entity sets. 

 

Query Workloads:  

Since we use a subset of the dataset from SemSearch, 

some queries in its query workload may not contain 

enough candidate answers. We picked the 55 queries 

from the 92 in the query workload that have at least 50 

candidate answers in our dataset. Because the number of 

entries for each query in the relevance judgment file has 

also been reduced, we discarded another two queries 

(Q6 and Q92) without any relevant answers in our 

dataset, according to the relevance judgment file. Hence, 

our experiments is done using 53 queries (2, 4, 5, 11-12, 

14-17, 19-29, 31, 33-34, 37-39, 41-42, 45, 47, 49, 52-54, 

56- 58, 60, 65, 68, 71, 73-74, 76, 78, 80-83, 88-91) from 

the SemSearch query workload. 26 query topics are 

provided with relevance judgments in the INEX 2010 

Data Centric Track. Some query topics contain 

characters ―+" and ―−" to indicate the conjunctive and 

exclusive conditions. In our experiments, we do not use 

these conditions and remove the keywords after 

character ―−". Some searching systems use these 

operators to improve search quality. 

 

Top-K Results: 

Generally, the basic information units instructured data 

sets, attribute values, are much shorter than text 

documents. Thus, a structured data set contains a larger 

number of information units than an unstructured data 

set of the same size. For instance, each XML document 

in the INEX data centric collection constitutes hundreds 

of elements with textual contents. Hence, computing 

Equation 3 for a large DB is so inefficient as to be 

impractical. Hence, similar to [22], we corrupt only the 

top-K entity results of the original data set. We re-rank 

these results and shift them up to be the top-K answers 

for the corrupted versions of DB. In addition to the time 

savings, our empirical results in Section 8.2 show that 

relatively small values for K predict the difficulty of 

queries better than large values. For instance, we found 
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that K = 20 delivers the best performance prediction 

quality in our datasets.  

 

Number of Corruption Iterations (N):  

Computing the expectation in Equation 3 for all possible 

values of _x is very inefficient. Hence, we estimate the 

expectation using N >0 samples over M (|A|× V). That is, 

we use N corrupted copies of the data. Obviously, 

smaller N is preferred for the sake of efficiency. 

However, if we choose very small values for N the 

corruption model becomes unstable [20] 

B. Structure Robustness Algorithm 
 

The Structured Robustness Algorithm (SR Algorithm), 

which computes the exact SR score, based on the top K 

result entities. Each ranking algorithm uses some 

statistics about query terms or attributes values over the 

whole content of DB. 

Input: - Query Q, Top-K result list L of Q by ranking 

function g , Metadata M , Inverted indexes I , Number of 

corruption iteration N.  

Output: - SR score for Q.  

 

2. FOR i =1  N Do  

 

4. For each result R in L DO  

5. FOR each attribute value A in R DO  

 

7. FOR each keyword w in Q Do  

8. Compute # of w in A’ by Equation // If λT, w, λS, w 

needed but not in C, calculate and cache them  

9. IF # of w varies in A’ and A THEN  

10. Update A’, M’ and entry of w in I’;  

11. Add A’ to R’;  

12. Add R’ to L’;  

13. Rank L’ using g, which returns L based on I’, M’;  

14. SR+= Sim (L, L’); //Sim computers Spersman 

correlation  

 

 

Each ranking algorithm uses some statistics about query 

terms or attributes values over the whole content of DB. 

Some examples of such statistics are the number of 

occurrences of a query term in all attributes values of the 

DB or total number of attribute values in each attribute 

and entity set. These global statistics are stored in M 

(metadata) and I (inverted indexes) in the SR Algorithm 

pseudo code. 
 

SR Algorithm generates the noise in the DB on-the-fly 

during query processing. Since it corrupts only the top K 

entities, which are anyways returned by the ranking 

module, it does not perform any extra I/O access to the 

DB, except to lookup some statistics. Moreover, it uses 

the information which is already computed and stored in 

inverted indexes and does not require any extra index. 

 

SR Algorithm loops every attribute value in each top-k 

result and test whether it must be corrupted. As noted 

one entity have hundreds of attribute values. We must 

note that the attribute values that do not contain any 

query term still must be corrupted. For a second and 

third level of corruption defined in equation. This is 

because their attribute or entity sets may contain some 

query keywords. This will largely increases the number 

of attribute value to be corrupted. For instance, for 

IMDB which has only two entity sets, SR Algorithm 

corrupts all attribute values in the top-k results for all 

query keywords. Second, ranking algorithms for DBs 

are relatively slow.SR Algorithm has to re-rank the top k 

entities N times which is time consuming. 

C. Proposed Work 
 

In this project, we analyze the characteristics of difficult 

queries over databases and proposed a novel method to 

detect such queries. This project takes advantage of the 

structure of the data to gain insight about the degree of 

the difficulty of a query given the database. This project 

introduces the problem of predicting the degree of the 

difficulty for queries over databases. This project also 

analyzes the reasons that make a query difficult to 

answer by KQIs. This project propose the Structured 

Robustness (SR) score, which measures the difficulty of 

a query based on the differences between the rankings of 

the same query over the original and noisy (corrupted) 

versions of the same database, where the noise spans on 

both the content and the structure of the result entities. 

This project presents an algorithm to compute the SR 

score, and parameters to tune its performance. 

Researchers have shown that this approach predicts the 

difficulty of a query more accurately than pre-retrieval 

based methods for text documents. Some systems 

measure the distinguish ability of the queries results 

from the documents in the collection by comparing the 

probability distribution of terms in the results with the 

probability distribution of terms in the whole collection. 

These methods usually use the statistical properties of 

the terms in the query to measure specificity, ambiguity, 
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or term-relatedness of the query to predict its difficulty. 

Examples of these statistical characteristics are average 

inverse document frequency of the query terms or the 

number of documents that contains at least one query 

term. 

 

IV. CONCLUSION 
 

We introduced the novel problem of predicting the 

effectiveness of keyword queries over DBs. We showed 

that current prediction methods for queries over 

unstructured data sources cannot be effectively used to 

solve this problem. We set forth a principled framework 

and proposed novel Method to measure the degree of the 

difficulty of a query over a DB, using the ranking 

robustness principle. Our extensive experiments show 

that the algorithms predict the difficulty of a query with 

relatively low errors and negligible time overheads. 
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